Abstract

To extract anthocyanins with high efficiency, a hypothesis for high-speed shear homogenization extraction (HSHE) method was established through a combination of solvent and ultrasonic-assisted extractions. The efficacy of this hypothesis was demonstrated by performing qualitative and quantitative analyses of 16 anthocyanins extracted from five northern vegetables, and five berry fruits using ultra-high-performance Q-Exactive Orbitrap tandem mass spectrometry. Single-factor experiments were conducted by varying ethanol concentration, temperature, pH and extraction cycles to determine the optimal conditions for this method. Optimal extraction conditions (ethanol 70-80%, 40-50 °C, pH 3-4, performed twice) were determined using an HSHE (5 min, 10 000 rpm, 25 °C) assisted shaker (60 min) and ultrasonication (40 kHz, 160 W cm-2, 30 min, 25 °C) procedure. Compared to the traditional non-HSHE method, the total anthocyanin content obtained through HSHE extraction showed a significant increase, ranging from 1.0 to 3.9 times higher, with purple cabbage exhibiting the most pronounced enhancement in content. More types of anthocyanins were detected in blueberry (9), black bean (7) and raspberry (5), of which malvidin was the major anthocyanin (0.426 g kg-1) in blueberry, having an amount five times than previously obtained. The established HSHE method has been proven to be a superior technique for anthocyanin extraction, with higher extraction efficiency and concentrations. This technique also provides a new avenue for extracting bioactive compounds from diverse food sources, with potential applications in improving the functional properties of food products. © 2024 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.