Abstract

Abstract We investigate, by means of ab initio calculations based on non-equilibrium Green's function method coupled to density function theory, electronic transport in molecular junctions composed of biphenyl (BP) and biphenyl within (-2H+) defect (BP2D) molecules attached to metallic (9,0) carbon nanotubes. We demonstrate that the BP2D junction exhibits unprecedented electronic transport properties, and that its conductance can be up to three orders of magnitude higher than biphenyl single-molecule junctions. These findings are explained in terms of the non-planar molecular conformation of BP2D, and of the stronger electronic coupling between the BP2D molecule and the organic electrodes, which confers high stability to the junction. Our results suggest that BP2D attached to carbon nanotubes can be explored as an efficient and highly stable platform in single-molecule electronics with extraordinary transport properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call