Abstract

Magnetite, a common mineral that is abundant in the soils and sediments, has been widely documented to enhance the anaerobic digestion of organic wastes, whereas the mechanisms of magnetite promoting interspecies electron transfer are still unclear. In this study, under the conditions (ethanol-type fermentation) employed, magnetite stimulated the secretion of extracellular polymeric substances (EPS). Analysis of three-dimensional excitation emission matrix revealed that these EPS secreted in the presence of magnetite were primarily comprised of the redox-active organic functional groups. Electrochemical analysis showed that the EPS secreted with magnetite had the higher electron-accepting and electron-donating capacity than the EPS without magnetite. Syntrophomonas species capable of extracellularly transferring electron were enriched with supplementing magnetite. Together with the increased abundance of Methanospirillum and Methanobacterium species that could proceed direct interspecies electron transfer (DIET), the anaerobic digestion was likely improved due to the establishment of DIET with supplementing magnetite. As a result, anaerobic digestion of kitchen wastes was evidently enhanced. With decreasing the solid retention time to 30 d, the methane production rate only slightly declined to 18 ± 0.8 mL/g-VSS/d in the magnetite-supplemented digester, while almost no methane was detected in the digester without magnetite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call