Abstract
Transfusion of autologous late‐outgrowth endothelial cells (OECs) is a promising treatment for restenosis after revascularization. Preparing cells by in vitro amplification is a key step to implement the therapy. This study aimed to demonstrate that bilobalide, a terpenoid, enhances the OEC amplification. Human‐, rabbit‐ and rat OECs and a mouse femoral artery injury model were used. Expanding OECs used endothelial growth medium‐2 as the standard culture medium while exploring the mechanisms used endothelial basal medium‐2. Proliferation assay used MTT method and BrdU method. Migration assay used the modified Boyden chamber. Intracellular nitric oxide, superoxide anion, hydroxyl radical/peroxynitrite and H2O2 were quantified with DAF‐FM DA, dihydroethidium, hydroxyphenyl fluorescein and a H2O2 assay kit, respectively. Activated ERK1/2 and eNOS were tested with the Western blot. Bilobalide concentration‐dependently enhanced OEC number increase in vitro. Transfusion of bilobalide‐based human OECs into femoral injured athymia nude mouse reduced the intimal hyperplasia. Bilobalide promoted OEC proliferation and migration and increased the intracellular nitric oxide level. L‐NAME, a NOS inhibitor, inhibits but not abolishes OEC proliferation, migration and ERK1/2 activation. Bilobalide concentration‐dependently enhanced the eNOS Ser‐1177 phosphorylation and Thr‐495 dephosphorylation in activated OECs. Bilobalide alleviates the increase in hydroxyl radical/peroxynitrite, superoxide anion and H2O2 in proliferating OECs. In conclusion, nitric oxide plays a partial role in OEC proliferation and migration; bilobalide increases OEC nitric oxide production and decreases nitric oxide depletion, promoting the OEC number increase; Bilobalide‐based OECs are active in vivo. The findings may simplify the preparation of OECs, facilitating the implementation of the autologous‐OECs‐transfusion therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.