Abstract

This study addresses the pervasive and debilitating impact of Alzheimer's disease (AD) on individuals and society, emphasizing the crucial need for timely diagnosis. We present a multistage convolutional neural network (CNN)-based framework for AD detection and sub-classification using brain magnetic resonance imaging (MRI). After preprocessing, a 26-layer CNN model was designed to differentiate between healthy individuals and patients with dementia. After detecting dementia, the 26-layer CNN model was reutilized using the concept of transfer learning to further subclassify dementia into mild, moderate, and severe dementia. Leveraging the frozen weights of the developed CNN on correlated medical images facilitated the transfer learning process for sub-classifying dementia classes. An online AD dataset is used to verify the performance of the proposed multistage CNN-based framework. The proposed approach yielded a noteworthy accuracy of 98.24% in identifying dementia classes, whereas it achieved 99.70% accuracy in dementia subclassification. Another dataset was used to further validate the proposed framework, resulting in 100% performance. Comparative evaluations against pre-trained models and the current literature were also conducted, highlighting the usefulness and superiority of the proposed framework and presenting it as a robust and effective AD detection and subclassification method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.