Abstract
The evaluation of algal bloom forecasting models typically relies on error metrics that quantify the forecasting performance over the whole test set as a single number. Furthermore, the comparison with simple baseline methods is often omitted. To address this, we introduce a novel framework for Model performance Analysis and Visualization of time series forecasting (MAVts). MAVts incorporates novel algorithms for the automatic identification and visualization of time series periods of interest where the forecasting models are evaluated and compared with simple baseline methods. The application of MAVts on evaluating algal bloom forecasting models composed of sophisticated machine learning (ML) methods, reveals that in 85% of experiments a single error metric is not enough and only in 12.5% of experiments a ML model outperforms all baselines on all metrics and periods of interest. Thus, MAVts emerges as a valuable tool for analyzing and comparing ML models, advancing environmental management and protection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.