Abstract
The recent advancements in Advanced Driver Assistance Systems (ADAS) have significantly contributed to road safety and driving comfort. An integral aspect of these systems is the detection of driver anomalies such as drowsiness, distraction, and impairment, which are crucial for preventing accidents. Building upon previous studies that utilized ensemble model learning (XGBoost) with deep learning models (ResNet50, DenseNet201, and InceptionV3) for anomaly detection, this study introduces a comprehensive feature importance analysis using the SHAP (SHapley Additive exPlanations) technique. The technique is implemented through explainable artificial intelligence (XAI). The primary objective is to unravel the complex decision-making process of the ensemble model, which has previously demonstrated near-perfect performance metrics in classifying driver behaviors using in-vehicle cameras. By applying SHAP, the study aims to identify and quantify the contribution of each feature – such as facial expressions, head position, yawning, and sleeping – in predicting driver states. This analysis offers insights into the model’s inner workings and guides the enhancement of feature engineering for more precise and reliable anomaly detection. The findings of this study are expected to impact the development of future ADAS technologies significantly. By pinpointing the most influential features and understanding their dynamics, a model can be optimized for various driving scenarios, ensuring that ADAS systems are robust, accurate, and tailored to real-world conditions. Ultimately, this study contributes to the overarching goal of enhancing road safety through technologically advanced, data-driven approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.