Abstract

A homoacetogenic consortium was cultivated from feces from a nursing joey red kangaroo and inoculated into an in vitro ruminal culture. The in vitro ruminal culture was treated with methanogenic inhibitor 2-bromoethanesulfonate (BES), followed by two different homoacetogenic inoculation strategies. Initial observations showed inhibitory effects of BES, with stabilization of the acetic acid concentrations without any increase in concentration, even with the homoacetogenic inoculation. When homoacetogenic bacterial culture was added after the BES addition had ceased, acetic acid production was increased 2.5-fold. Next-generation sequencing showed an increased population of Bacteroidetes after inoculation with the homoacetogenic consortia, along with a slight decrease in diversity. An Almond Shell biochar (AS) addition resulted in a 28% increase in acetic acid concentration if tested directly on the homoacetogenic kangaroo consortia. However, when applied to the rumen culture, it did not enhance acetate production but further promoted other reductive pathways such as methanogenesis and propiogenesis, resulting in increased concentrations of methane and propionic acid, respectively. These findings demonstrate that bioaugmentation with homoacetogenic bacteria can improve acetic acid production of an in vitro rumen culture when methanogenesis has been eliminated. Such advancements can potentially contribute to the optimization of rumen fermentation processes and may have practical implications for improved livestock feed efficiency and methane mitigation strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call