Abstract
The electrocatalytic activity for CO2 reduction is greatly enhanced for Co complexes with pyridyldiimine-based ligands through the stepwise integration of three synergistic substituent effects: extended conjugation, electron-withdrawing ability, and intramolecular electrostatic effects. The stepwise incorporation of these effects into the catalyst structures results in a series of complexes that show an atypical inverse scaling relationship for CO2 reduction-the maximum activity of the resulting catalysts increases as the onset potentials are driven positive due to the ligand electronic substituent effects. Incorporating all three effects simultaneously into the catalyst structure results in a Co complex [Co(PDI-PyCH3+I-)] with dramatically enhanced activity for CO2 reduction, operating with over an order of magnitude higher activity (TOFcat = 4.1 × 104 s-1) and ∼0.2 V more positive catalytic onset (Eonset = -1.52 V vs Fc+/0) compared to the parent complex, an intrinsic activity parameter TOF0 = 6.3 × 10-3 s-1, and >95% Faradaic efficiency for CO production in acetonitrile with 11 M water. This makes [Co(PDI-PyCH3+I-)] among the most active molecular catalysts reported for the CO2 reduction reaction. Our work highlights a promising catalyst design strategy for molecular CO2RR catalysts in which catalytic ability is enhanced by tuning three synergistic substituent effects simultaneously in a single catalyst structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.