Abstract

BackgroundHighly regulated gene expression program underlies osteogenesis of mesenchymal stem cells (MSCs), but the regulators in the program are not entirely identified. As enhancer RNAs (eRNAs) have recently emerged as a key regulator in gene expression, we assume a commitment of an eRNA in osteogenesis.MethodsWe performed in silico analysis to identify potential osteogenic microRNA (miRNA) gene predicted to be regulated by super-enhancers (SEs). SE inhibitor treatment and eRNA knocking-down were used to confirm the regulational mechanism of eRNA. miRNA function in osteogenesis was elucidated by miR mimic and inhibitor transfection experiments.ResultsmiR-3129 was found to be located adjacent in a SE (osteoblast-specific SE_46171) specifically activated in osteoblasts by in silico analysis. A RT-quantitative PCR analysis of human bone marrow-derived MSC (hBMSC) cells showed that eRNA_2S was transcribed from the SE with the expression of miR-3129. Knockdown of eRNA_2S by locked nucleic acid as well as treatment of SE inhibitors JQ1 or THZ1 resulted in low miR-3129 levels. Overexpression of miR-3129 promoted hBMSC osteogenesis, while knockdown of miR-3129 inhibited hBMSC osteogenesis. Solute carrier family 7 member 11 (SLC7A11), encoding a bone formation suppressor, was upregulated following miR-3129-5p inhibition and identified as a target gene for miR-3129 during differentiation of hBMSCs into osteoblasts.ConclusionsmiR-3129 expression is regulated by SEs via eRNA_2S and this miRNA promotes hBMSC differentiation into osteoblasts through downregulating the target gene SLC7A11. Thus, the present study uncovers a commitment of an eRNA via a miR-3129/SLC7A11 regulatory pathway during osteogenesis of hBMSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call