Abstract

Enhancer and gene trapping methods are highly effective means for the identification and functional analysis of transcriptionally active genes. With recent advances in fluorescent proteins and transposon based integration technologies, a growing family of trapping approaches has been developed in zebrafish, offering powerful tools to both visualize and functionally dissect gene networks during development. Coupled with the intrinsic advantages of the zebrafish model system, creative genetic engineering of trap vectors has enabled high-resolution molecular imaging and genetic manipulations. This review highlights the different enhancer and gene trap approaches that have been developed in zebrafish and offers insights into the strengths, limitations and experimental strategies for their application to enrich our knowledge of gene function and the cellular processes they control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.