Abstract

In this paper, we address a bi-objective vehicle routing problem in which the total length of routes is minimized as well as the balance of routes, i.e. the difference between the maximal route length and the minimal route length. For this problem, we propose an implementation of the standard multi-objective evolutionary algorithm NSGA II. To improve its efficiency, two mechanisms have been added. First, a parallelization of NSGA II by means of an island model is proposed. Second, an elitist diversification mechanism is adapted to be used with NSGA II. Our method is tested on standard benchmarks for the vehicle routing problem. The contribution of the introduced mechanisms is evaluated by different performance metrics. All the experimentations indicate a strict improvement of the generated Pareto set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.