Abstract

In this letter, enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated based on lateral scaling of the 2-D electron gas channel using nanochannel array (NCA) structure. The NCA structure consists of multiple parallel channels with nanoscale width defined by electron-beam lithography and dry etching. Because of the improved gate control from the channel sidewalls and partially relaxed piezoelectric polarization, the fabricated 2 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu\hbox{m}$</tex></formula> -gate-length NCA-HEMT with a nanochannel width of 64 nm showed a threshold voltage of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$+$</tex> </formula> 0.6 V and a higher extrinsic transconductance of 123 mS/mm, compared to <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX"> $-$</tex></formula> 1.6 V and 106 mS/mm for the conventional HEMT with <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu \hbox{m}$</tex></formula> -scale channel width. The scaling of threshold voltages, peak transconductance, and gate leakage as a function of the nanochannel width were investigated. Small-signal RF performance of NCA-HEMTs were characterized for the first time and compared with those of conventional HEMTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call