Abstract

The modeling of different problems in aeroelasticity requires a time-domain equation of motion, especially to design modern controllers and study nonlinear characteristics. Typically, unsteady aerodynamic forces are written in the (reduced) frequency domain and then rewritten using rational function approximations in the time domain. In this context, this Paper presents an investigation of this topic including a literature review of the Least Square method used to obtain the time-domain aeroelastic system. It discusses the physical meanings of the augmented aerodynamics states due to the lag terms. It proposes an approach to use a phase error-based index to measure the rational function approximations accuracy depending on the number of lag terms. The proposal allows the analyst to determine the number of lag parameters to establish a time-domain aeroelastic model of a specified accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.