Abstract

The fabricated E. coli sensor of ZnO-rGO nanocomposite thin films by gamma radiation was investigated. Nanocomposite films were prepared via sol–gel method and were irradiated at 10kGy at room temperature. The surface characteristic of as-prepared samples have been characterized by x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The proposed structure shows that exposed gamma radiation may change the microstructure of the films occurs as a result of their flexible structure. Uv–vis spectra of nanocomposite were studied to investigate the optical behavior of ZnO-rGO films and the optical energy band gap and Urbach energy were found to be gamma dose dependent. The sensing properties were identified by measuring the changes of conductivity of film using I-V measurement. Upon exposure to E. coli, the radiated ZnO-rGO films (1.00vol% GO) exhibited higher sensitivity, as much as 4.62×10−3, than un-radiated films, 1.04×10−3. This enhancement of the I-V response was attributed to a positive influence of the gamma radiation in these films. The results prove that our ZnO-rGO nanocomposites thin films by gamma radiation demonstrate a strong performance for the detection of microbiological organisms in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.