Abstract

Zebrafish (Danio rerio) is a commonly-used vertebrate model species for many research areas. However, its low milt volume limits effective cryopreservation of sperm from a single individual and often precludes dividing a single semen sample to conduct multiple downstream procedures such as genomic DNA/RNA extraction and in-vitro fertilization. Here, we apply germ stem cell transplantation to increase zebrafish sperm production in a closely related larger species from the same subfamily, giant danio Devario aequipinnatus. The endogenous germ cell of the host is depleted by dead-end morpholino antisense oligonucleotide. Histology of the sterile gonad and quantitative PCR of gonadal tissue reveals all sterile giant danio develop the male phenotype. Spermatogonial cells of Tg(ddx4:egfp) transgenic zebrafish are transplanted into sterile giant danio larvae, and 22% of recipients (germline chimera) produce donor-derived sperm at sexual maturation. The germline chimera produce approximately three-fold the volume of sperm and 10-fold the spermatozoon concentration of the donor. The donor-derived sperm is functional and gives rise to viable progeny upon fertilization of donor oocytes. We show that the issue of low milt volume can be effectively addressed by employing a larger surrogate parent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call