Abstract

In this paper, an experimental study is presented on an investigation to improve the weld strength of laser-welded joints via post-processing by warm laser shock peening (wLSP). A dual-laser setup was utilized to simultaneously heat the sample to a prescribed temperature and to perform the wLSP process on the laser-welded joints of AA6061-T6 and TZM alloys. Joints in overlap and bead-on-plate configurations were created by laser welding by a high-power fiber laser and post-processed with wLSP. The tensile tests carried out on wLSP-processed AA6061-T6 samples demonstrate an enhancement in the strength by about 20% over as-welded samples and the ductility of samples processed by wLSP improved by 30% over as-welded samples. The bead-on-plate (BOP) welds of TZM alloy processed with wLSP demonstrated an enhancement in strength by about 30% and the lap welds processed with wLSP demonstrated an increase in the joint strength by 22%. Finite element analysis revealed that the depth and magnitude of compressive stresses imparted by wLSP were greater than room temperature laser shock peening (rtLSP), which contributed to the enhancement of the joint strength for processed samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.