Abstract

In order to enhance the performance and sustainability of wastewater treatment technologies, researchers are showing keen interest in the development of novel materials which can overcome the drawbacks associated with conventional materials. In this context, 3D printing gained significant attention due to its capability of fabricating complex geometrics using different material compositions. The present review focuses on recent advancements of 3D printing applications in various physicochemical and biological wastewater treatment techniques. In physicochemical treatment methods, substantial research has been aimed at fabricating feed spacers and other membrane parts, photocatalytic feed spacers, catalysts, scaffolds, monoliths, and capsules. Several advantages, such as membrane fouling mitigation, enhanced degradation efficiency, and recovery and reusability potential, have been associated with the aforementioned 3D printed materials. While in biofilm-based biological treatment methods, the use of 3D printed bio-carriers has led to enhanced mass transfer efficiency and microbial activities. Moreover, the application of these bio-carriers has shown better removal efficiency of chemical oxygen demand (∼90%), total nitrogen (∼73%), ammonia nitrogen (95%), and total phosphorous (∼100%). Although the removal efficiencies were comparable with conventional carriers, 3D printed carriers led to ∼40% reduction in hydraulic retention time, which could significantly save capital and operational expenditures. This review also emphasizes the challenges and sustainability aspects of 3D printing technology and outlines future recommendations which could be vital for further research in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call