Abstract

In order to simultaneously solve the problems of the poor light absorption capacity and high recombination rate of photogenerated carriers, Bi5O7Br photocatalyst with abundant ordered/disordered structures (O/D-Bi5O7Br) was prepared through a simple in situ disorder engineering. The prepared samples were characterized by XRD, TEM, HRTEM, SAED, XPS, UV-Vis diffuse reflectance spectra (DRS), and the activity was evaluated by photocatalytic degradation of tetracycline hydrochloride (TC) and hydrogen evolution under visible light irradiation. Results revealed that the ordered/disordered structure not only enhances the light absorption ability, uplifts conduction band position, facilitates the transfer and separation of photogenerated carriers, but also offers abundant unsaturated atoms as active sites for the photocatalytic process. Therefore, O/D-Bi5O7Br exhibits a high hydrogen evolution rate of 38.12 μmol/(g·h) and superior TC degradation rate of 86% within 135 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call