Abstract

Graphitic-like carbon nitride (g-C3N4) photocatalyst was synthesized by a facile chemical pyrolysis method, which was built on the self-condensation of different precursors to generate g-C3N4, e.g., melamine, urea, and thiocarbamide. And the different precursors produced a great influence on the photocatalytic activities of g-C3N4. Heterojunctions of g-C3N4 and BiVO4 were synthesized using a facile solvent evaporation method. The formation of BiVO4/g-C3N4 composites were confirmed by XRD, FT-IR, SEM, XPS, and UV-Vis DRS. The photocatalytic activities for RhB degradation were evaluated under visible-light irradiation. The photocatalytic activity of g-C3N4 prepared by urea was higher than that of g-C3N4 prepared by melamine and thiocarbamide, which was attributed to its favorable dispersibility, larger specific surface area, and higher oxidation capacity. The heterojunction composites exhibited higher photocatalytic activity than pure g-C3N4 or BiVO4. The results showed obvious removal efficiency for RhB, and the optimal sample with a BiVO4 content of 10% exhibited higher efficiency than pure g-C3N4 and BiVO4, and 10wt%BiVO4/CN-U showed the highest photocatalytic activity. The enhanced photocatalytic activity of BiVO4/g-C3N4 composite can be attributed to the intimate coupling between the two host substrates, resulting in an efficient charge separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.