Abstract

Photocatalytic hydrogen (H2 ) evolution represents a promising and sustainable technology. Covalent organic frameworks (COFs)-based photocatalysts have received growing attention. A 2D fully conjugated ethylene-linked COF (BTT-BPy-COF) was fabricated with a dedicated designed active site. The introduced bipyridine sites enable a facile post-protonation strategy to fine-tune the actives sites, which results in a largely improved charge-separation efficiency and increased hydrophilicity in the pore channels synergically. After modulating the degree of protonation, the optimal BTT-BPy-PCOF exhibits a remarkable H2 evolution rate of 15.8 mmol g-1 h-1 under visible light, which surpasses the biphenyl-based COF 6 times. By using different types of acids, the post-protonation is proved to be a potential universal strategy for promoting photocatalytic H2 evolution. This strategy would provide important guidance for the design of highly efficient organic semiconductor photocatalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call