Abstract

We recently demonstrated orders of magnitude enhancement of two-photon absorption (2PA) in direct gap semiconductors due to intermediate state resonance enhancement for photons of very different energies. It can be expected that further enhancement of nondegenerate 2PA will be observed in quantum wells (QWs) since the intraband matrix elements do not vanish near the band center as they do in the bulk, and the density of states in QWs is larger near the band edge. Here we present a perturbation-theory based theoretical description of nondegenerate 2PA in semiconductor QWs, where both frequency and polarization of two incident waves can vary independently. Analytical expressions for all possible permutations of frequencies and polarizations have been obtained, and the results are compared with degenerate 2PA in quantum wells along with degenerate and nondegenerate 2PA in bulk semiconductors. We show that using QWs in place of bulk semiconductors with both beams in the TM-polarized mode leads to an additional order of magnitude increase in the nondegenerate 2PA. Explicit calculations for GaAs QWs are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.