Abstract

Excitation of phenylacetylene (PA) and benzonitrile to their lowest singlet states in a molecular beam has previously been shown to immediately (only during the 8 ns laser pulse) result in long-lived species with low ionization potentials (Hofstein, J.; Xu, H.; Sears, T.; Johnson, P.M. J. Phys. Chem. A 2008, 112, 1195-1201). Using the fragmentation of ions produced by photoionization at various times after initial excitation as a diagnostic for molecular geometry evolution, the long-lived species in phenylacetylene is shown to be a PA state (most likely a triplet) rather than an isomer. Delayed fluorescence and a delayed photoelectron signal indicative of S1 are also seen, indicating a singlet-triplet mixing process that is not quite in the statistical-coupling limit and is parallel to the long-lived species channel. Electronic structure calculations indicate that the lowest triplet state of phenylacetylene is nonplanar with the ethynyl group bent in a trans-configuration out of the plane of the ring. The substituent π-electrons are significantly conjugated into the ring, resulting in a tendency toward a quinoidal structure, which may be related to the unusual excited state stability. These molecules constitute the first members of a new class of excited state behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.