Abstract

We report a theoretical study highlighting the fundamental effects of backbone disorder which simulates the environmental complications on charge transport properties of biological and synthetic DNA molecules. Based on effective tight-binding models of duplex DNA, the Lyapunov coefficient and current-voltage characteristics are numerically calculated by varying the backbone disorder degree. In contrast to the localization picture that the conduction of duplex DNA becomes poorer when the backbone disorder degree is increased, we find that the backbone disorder can enhance the charge transport ability of the DNA molecules when the environment-induced disorder surpasses a critical value, giving rise to a semiconducting-metallic transition. The physical origin for this is traced back to the antiresonant effects. These results provide a scenario to interpret a variety of transport behaviors observed in DNA molecules and suggest perspectives for future experiments intending to control the charge transport through DNA-based nanodevices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.