Abstract

This paper deals with a systematic study on the co-doping N,S on TiO2 photocatalyst to improve its activity under visible light on the removal of Pb(II) from the aqueous media. The co-doping TiO2 by N,S atoms was conducted in an autoclave by one-step hydrothermal of TiO2 mixed with nitric and sulfuric acids as the sources of N and S, respectively. The mole ratio of TiO2:nitric acid:sulfuric acid was varied as 1:1:0.5, 1:1:1, and 1:1:1.5 to find the best ratio toward the activity. The co-doped photocatalysts obtained were characterized by specular reflectance UV/Vis (SRUV), X-ray diffraction (XRD), and fourier transform infrared (FTIR) instruments. A batch experiment was carried out for oxidation of Pb(II), driven by a combination of visible light and TiO2-N,S photocatalyst. The research results attribute that co-doping N,S into TiO2 has remarkably narrowed the gap in the TiO2 structure, emerging in the visible region. It was also proven that the co-doped in TiO2 can considerably enhance its activity in the removal of Pb(II) under visible light, and the highest activity was owned by TiO2-N,S (1:1:1). Furthermore, the most effective removal of Pb(II) 10 mg/L (98%) could be reached by employing 500 mg L-1 of the TiO2-N,S (1:1:1) dose, 45 min of the time, and the solution pH at 7. The Pb(II) removed is due to the photo-oxidation induced by OH radicals to form the handleable PbO2.

Highlights

  • Oxidation of various organic pollutants on a solar-powered semiconductor photocatalyst provides a clean and environmentally friendly process [1]

  • TiO2 with a wide gap assigned by Eg 3.20 eV can only be activated under UV light [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], and it is less active under visible light exposure

  • This deficiency restricts the application of TiO2 photocatalyst under low cost sunlight, which is mostly composed of visible light [2, 8, 11]

Read more

Summary

Introduction

Oxidation of various organic pollutants on a solar-powered semiconductor photocatalyst provides a clean and environmentally friendly process [1]. TiO2 with a wide gap assigned by Eg 3.20 eV can only be activated under UV light [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16], and it is less active under visible light exposure This deficiency restricts the application of TiO2 photocatalyst under low cost sunlight, which is mostly composed of visible light [2, 8, 11].

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.