Abstract

FeSb2 was recently found to be a narrow-gap semiconductor with strong electronelectron correlation and a large thermopower at low temperatures. We report measurements of the electrical resistivity, Seebeck coefficient and thermal conductivity between 5 K to 300 K on polycrystalline samples of FeSb2 and FeSb1.9. We found that the deficiency of Sb in the parent compound leads to a giant anomalous peak in thermopower (S) at low temperatures, reaching ~ 426 μV/K at 20 K, resulting in a high thermoelectric power factor at low temperatures, achieving 10 μW/K2m at 27 K.. Consequently, a significantly enhanced thermoelectric figure of merit ZT ~ 0.0015 is achieved near room temperature. At low temperatures there is no improvement in ZT values due to the high thermal conductivity (phonon dominant region). Keywords: Seebeck coefficient, thermal conductivity, resistivity, thermoelectric figure of merit. PACS: 72.20.Pa, 71.27.+a, 71.28.+d

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call