Abstract
To meet the growing demand for thermoelectric devices operating in intermediate temperature ranges, it is essential to develop high-performance materials with superior thermoelectric properties and robust mechanical strength. In this study, we systematically optimized carrier concentration by introducing acceptor impurities into ZnSb materials. Our results demonstrate that doping Cu into the Zn site effectively modulates hole carrier concentration, leading to a substantial enhancement in electrical conductivity and a remarkable improvement in power factor (107 %). Consequently, we achieved a high peak ZT of 1.04 at 600 K and an average ZTave value of 0.63 within the temperature range of 300–600 K. This yielded a calculated efficiency of ηmax = 7 % at ΔT = 300 K, for the Zn0.99Cu0.01Sb sample, which is 134 % higher than that of the pristine ZnSb sample (ηmax = 2.98 %). Moreover, the superior hardness and fracture toughness (KIC) of ZnSb samples compared to other state-of-the-art thermoelectric materials make them highly desirable for real-time applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.