Abstract

This work reports the thermoelectric properties of the CuSbSe2 -x mol% PtTe2 (x = 0, 0.5, 1.0, 1.5, and 2.0) pellets composed of highly oriented single crystalline nanoplates. CuSbSe2 -PtTe2 single crystalline nanoplates are prepared by a wet-chemical process, and the pellets are prepared through a bottom-up self-assembly of the CuSbSe2 -PtTe2 nanoplates and spark plasma sintering (SPS) process. X-ray diffraction and field emission scanning electron microscopic analyses show a highly textured nature with an orientation factor of ≈0.8 for (00l) facets along the primary surface of the pellets (in-plane, perpendicular to the SPS pressure). By this way, bulk-single-crystal-like electrical and thermal transport properties with a strong anisotropy are obtained, which results in an effective optimization on thermoelectric performance. The maximum in-plane thermoelectric figure-of-merit ZT value reaches 0.50 at 673 K for CuSbSe2 -2.0 mol% PtTe2 pellet, which is about five times higher than the in-plane ZT (0.10) for pure CuSbSe2 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call