Abstract

Abstract In order to obtain higher thermoelectric and mechanical properties in nonpolar thermoplastic vulcanizates (TPVs), the butyl rubber/polypropylene (TPVs)/hydroxylated graphene (HGE) composites with nanosheet network were prepared through masterbatch technique and based on thermodynamic calculations, using polypropylene-graft-maleic anhydride (PP-MA) as a compatibilizer. The Fourier transform infrared (FTIR) and Raman spectra revealed the introduced maleic anhydride group on PP-MA can form strong interfacial interaction with hydroxyl-containing functional groups on HGE. Morphology study indicated the rubber particles in the composites occupied the most volume of the PP phase, as expected to hinder the aggregation of HGE and form the effective nanosheet network. The nanosheet network can be combined with the butyl rubber (IIR) cross-linked particles during the dynamic vulcanization process to improve the interface bonding between PP and IIR, thus increasing the tensile strength of TPVs. The prepared TPVs/HGE composites have significantly improved in mechanical properties, thermal properties and dielectric properties, which provides a guarantee for their potential application as multifunctional TPVs polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call