Abstract

Enhancement of the thermal properties of high- $T_{\rm c}$ superconducting (HTS) magnets has been investigated using built-in cryogenic oscillating heat pipes (OHPs). A cryogenic OHP is built into windings of an HTS magnet to improve the thermal properties of windings and to protect them from damage caused by a large temperature gradient. It is rather difficult for an HTS magnet to quickly remove the heat generated in windings, especially, in a protection operation when a magnet quenches, because the thermal diffusivities of component materials of windings decrease with an increase of temperature. Therefore, a local hot spot can be formed in a magnet, and there are possibilities of having degradation of superconducting properties and/or mechanical damages by thermal stresses. A flat-plate cryogenic OHP has been developed that is suitable for imbedding in magnet windings as a high-performance heat transportation device in order to increase the thermal conductivity and the thermal diffusivity at the same time. By using hydrogen, neon, and nitrogen as working fluid, its excellent thermal transport properties have been proved in the operating temperature range of 18–84 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.