Abstract

In this study, the effect of the introduction of carbon nanotubes (CNTs) as a filler for enhancing the thermal conductivity of paraffin-carbon nanotubes/expanded perlite form-stable composite phase change materials (PA-CNTs/EP FS-CPCMs) was experimentally investigated. Four samples of PA-CNTs/EP FS-CPCMs with different CNT mass fractions were prepared by vacuum impregnation. Scanning electron microscopy was employed to investigate the morphology and microstructure of CNTs, EP, and PA-CNTs/EP FS-CPCMs. Differential scanning calorimetry was employed to examine the thermal properties of PA-CNTs/EP FS-CPCMs, and results indicated that the latent heat and phase-change temperatures of the PA-CNTs/EP FS-CPCMs slightly change with the CNTs mass fractions. The thermal conductivity of PA-CNTs/EP FS-CPCMs5.27 (0.516Wm−1K−1) was 4.82 times that of PA-CNTs/EP FS-CPCMs0. The thermal storage and release properties of PA-CNTs/EP FS-CPCMs were significantly improved as compared with those of PA-CNTs/EP FS-CPCMs0. Results obtained from Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal cycling tests showed that PA-CNTs/EP FS-CPCMs exhibit good chemical and thermal stabilities. The as-prepared PA-CNTs/EP FS-CPCMs demonstrate considerable potential as thermal energy storage materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.