Abstract
This study aimed to enhance the water solubility and antioxidant properties of mangiferin by transglucosylation using cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacter sp. The highest mangiferin to mangiferin glucoside conversion yield achieved was 88.9% using 60 mU/mL CGTase, 25 mM mangiferin, and 10% starch (w/v), with incubation at 60 °C for 10 h. The product of transglucosylation was purified and its chemical structure was determined to be glucosyl-α-(1→4)-mangiferin (MGF-g1) using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy. The water solubility of MGF-g1 was 5,093 times higher than that of mangiferin. MGF-g1 exhibited 1.6-fold higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, 1.24-fold higher oxygen radical antioxidant capacity, and 1.19-fold higher ferric reducing ability power, compared to mangiferin. Moreover, the cyclooxygenase-2 inhibitory activity (IC50) of mangiferin and MGF-g1 were 76.44 ± 11.7 μM and 59.74 ± 2.8 μM, respectively. Our results suggest that the novel MGF-g1 has potential applications as a functional material in the food and pharmaceutical industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.