Abstract

In recent studies, a new class of planar and spatial linkage mechanisms was presented in which for a continuous full rotation or continuous rocking motion of the input link, the output link undergoes two continuous rocking motions. Such linkage mechanisms were referred to as the “motion-doubling” linkage mechanisms. This class of mechanisms was also shown to generally have dynamics advantage over regular mechanisms designed to achieve similar gross output motions. In the present study, the use of the motion-doubling linkage mechanisms in the construction of vehicle suspension systems is investigated. The performance of the resulting vehicle suspension system is compared to that of a suspension system regularly used in vehicles. For a typical set of vehicle and tire parameters, the parameters of both suspension systems are optimally determined with a commonly used objective function, which is defined as the standard deviation of the vertical acceleration of the vehicle. Using numerical simulation, it is shown that the suspension system constructed with a motion-doubling linkage mechanism has a significantly better performance as compared to a standard suspension system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.