Abstract

Recent studies on osteosarcoma regimens have mainly focused on modifying the combination of antineoplastic agents rather than enhancing the therapeutic efficacy of each component. Here, an albumin nanocluster (NC)-assisted methotrexate (MTX), doxorubicin (DOX), and cisplatin (MAP) regimen with improved antitumor efficacy is presented. Human serum albumin (HSA) is decorated with thiamine pyrophosphate (TPP) to increase the affinity to the bone tumor microenvironment (TME). MTX or DOX (hydrophobic MAP components) is adsorbed to HSA-TPP via hydrophobic interactions. MTX- or DOX-adsorbed HSA-TPP NCs exhibit 20.8- and 1.64-fold higher binding affinity to hydroxyapatite, respectively, than corresponding HSA NCs, suggesting improved targeting ability to the bone TME via TPP decoration. A modified MAP regimen consisting of MTX- or DOX-adsorbed HSA-TPP NCs and free cisplatin displays a higher synergistic anticancer effect in HOS/MNNG human osteosarcoma cells than conventional MAP. TPP-decorated NCs show 1.53-fold higher tumor accumulation than unmodified NCs in an orthotopic osteosarcoma mouse model, indicating increased bone tumor distribution. As a result, the modified regimen more significantly suppresses tumor growth in vivo than solution-based conventional MAP, suggesting that HSA-TPP NC-assisted MAP may be a promising strategy for osteosarcoma treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.