Abstract
The effects of boron doping on the itinerant-electron metamagnetic (IEM) transition and the magnetocaloric effects (MCEs) in the cubic NaZn13-type La0.8Gd0.2Fe11.4Si1.6 compound have been investigated. The Curie temperature, TC, of La0.8Gd0.2Fe11.4Si1.6Bx compounds with x=0, 0.03, 0.06, 0.2 and 0.3 was found to increase from 200K to 222K with increase in boron doping, x. The maximum values of the isothermal magnetic entropy change, ΔSM, (derived using the Maxwell relation for a field change ΔB=0–5T) in La0.8Gd0.2Fe11.4Si1.6Bx with x=0, 0.03, 0.06, 0.2 and 0.3 are 14.8, 16, 15, 7.5 and 6.6Jkg−1K−1 respectively, with corresponding values of the refrigerant capacity, RCP of 285, 361, 346, 222 and 245Jkg−1. The large ΔSM values observed for the undoped sample, and the low level B doped La0.8Gd0.2Fe11.4Si1.6B0.03 and La0.8Gd0.2Fe11.4Si1.6B0.06 compounds are attributed to the first order nature of the IEM transition while the decrease of ΔSM at x=0.2 and 0.3 is due to a change in the second order phase transition with increase in B doping. The nature of the magnetic phase transitions is also reflected by the magnetic hysteresis of 3.7, 9, 5.7, 0.4 and 0.3Jkg−1 for x=0.0, 0.03, 0.06, 0.2 and 0.30 respectively. The possibility of tuning the TC and the magnetocaloric properties at temperatures close to room temperature make this system interesting from the points of view of both fundamental aspects as well as applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.