Abstract

Certain optical applications, such as antireflective coatings on solar cells, require transparent films with high refractive indices (>2). Zinc oxide (ZnO) is a transparent semiconductor with exceptional optical properties. However, its refractive index in the transparent dispersionless region of the visible spectrum is lower than 2. In this study, we enhanced the refractive index of sputtered ZnO thin films through doping with iron oxide (Fe2O3), where ZnO targets were doped by 0.5–2.0 wt% of Fe2O3. The films were polycrystalline with smooth surfaces. Differential transmittance spectra were employed to derive the optical band gaps of the films, which showed a minor variation by ±0.03 eV due to doping. The refractive index was extracted from the transmittance spectra using a Cauchy equation and was further fitted by a single-oscillator model. The optimum refractive index was obtained for the films prepared from the target doped with 1.5 wt% of Fe2O3. Enhancement of the refractive index was accompanied by a reduction of optical absorption in the doped films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.