Abstract

The present study describes an impressive enhancement of the photoluminescence (PL) intensity of low-temperature synthesized CdSe nanocrystals (75 °C) during long-term UV-irradiation. The integrated PL-intensity of CdSe core and CdSe/ZnS core/shell nanocrystals, dispersed in chloroform, enhanced about 3 and 6 times, respectively, during 9 h exposure to UV-light, without any significant changes in the characteristic absorbance spectra and shifting of PL-spectra. After termination of the irradiation a comparatively slow photobleaching was detected with τ 1/2=6 h for CdSe core and τ 1/2=14 h for CdSe/ZnS core/shell nanocrystals. The most impressive was the effect of UV-irradiation on the photoluminescence of water-soluble CdSe nanocrystals. The integrated PL-intensity enhanced about 10 times during 11 h exposure to UV-light and the improved PL-intensity was preserved during 3 days after termination of the irradiation without any significant photobleaching. The results are discussed in the context of application of CdSe nanocrystals as novel fluorophores in life science experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call