Abstract

As a promising next-generation photodynamic therapy (PDT) photosensitizer, TiO2 nanoparticles (NPs) has gained great attention due to its higher efficiency. Yet, its application in PDT is strongly limited by its UV light response range. In this work, TiO2 NPs conjugated with reduced graphene oxide (RGO-TiO2) composites were successfully prepared by hydrothermal reduction method. They were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET), UV–vis spectroscopy and X-ray photoelectron spectroscopy (XPS). Superior adsorption and killing efficiency under UV-A light or visible light were achieved in the presence of the RGO rather than that of unmodified TiO2. The optimal photocatalytic activity was obtained when modified proportion was 0.2 (RGO:TiO2). Dark cytotoxicity was observed using 0–500μgmL−1 RGO-TiO2 during long incubation time. In parallel, following exposure of human hepatocellular carcinoma cell line (HepG2 cells) to RGO-TiO2 and UV-A or visible light irradiation, a marked decrease in the ratio of the super-coiled DNA, mitochondrial membrane potential (MMP), and the oxidative damage effects, as well as increased the apoptosis rate and intracellular calcium concentration were observed. Moreover, photocatalytic RGO-TiO2 composites killed the HepG2 cells by apoptosis pathway. The results suggested that RGO-TiO2 composites were an excellent candidate as a PDT photosensitizer in the near future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.