Abstract

In this Letter, a novel mechanism to enhance the magnetoelectric (ME) coupling between electric polarization and magnetism using the dynamic Jahn-Teller (JT) effect is demonstrated. Electric polarization of over 100 μC/m^{2} is induced by the magnetic field owing to the second-order ME effect in the noncentrosymmetric transition metal complex [Mn^{III}(taa)]. This appearance of electric polarization does not require magnetic order in contrast to the linear ME effect in ME multiferroic materials. The value of the electric polarization is 1 order larger than that induced by the second-order ME effect, which originates from the p-d hybridization. Our calculation, taking into account the single-ion-type magnetic anisotropy originating from the spin-orbit interaction and ferrodistortive intermolecular interaction, verifies that the alignment of the JT distortion by the magnetic field results in the large electric polarization observed. Thus, our results provide a new method to gain strong ME coupling by tuning the atomic displacement using a magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.