Abstract

This paper presents the design and development of an enhanced inertial navigation system that is to be integrated into the Morpheus autonomous underwater vehicle at Florida Atlantic University. The inertial measurement unit is based on the off-the-shelf Honeywell HG1700-AG25 3-axis ring-laser gyros and three-axis accelerometers and is aided with ground speed measurements obtained using an RDI Doppler-velocity-log sonar. An extended Kalman filter has been developed, which fuses together asynchronously the inertial and Doppler data, as well as the differential Global Positioning System positional fixes whenever they are available. A complementary filter was implemented to provide a much smoother and stable attitude estimate. Thus far, preliminary study has been made on characterizing the inertial navigation system-based navigation system performance, and the corresponding results and analyzes are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.