Abstract

We have studied the absorption and fluorescence spectra of Malachite Green and Crystal Violet in aqueous and alcoholic-aqueous solutions in which nanoparticles from Ln(III) and Sc(III) diketonates are formed at concentrations of complexes in a solution of 5–30 μM. We have shown that, if the concentrations of the dyes in the solution are lower than 0.5 μM, dye molecules are incorporated completely into nanoparticles or are precipitated onto their surface. The fluorescence intensity of these incorporated and adsorbed Malachite Green and Crystal Violet molecules increases by several orders of magnitude compared to the solution, which takes place because of a sharp increase in the fluorescence quantum yields of these dyes and at the expense of the sensitization of their fluorescence upon energy transfer from β-diketonate complexes entering into the composition of nanoparticles. We have shown that, if there is no concentration quenching, the values of the fluorescence quantum yield of the Crystal Violet dye incorporated into nanoparticles and adsorbed on their surface vary from 0.06 to 0.13, i.e., are close to the fluorescence quantum yield of this dye in solid solutions of sucrose acetate at room temperature. The independence of the fluorescence quantum yield of Crystal Violet on the morphology of nanoparticles testifies to a high binding constant of complexes and the dye. The considerable fluorescence quantum yields of triphenylmethane dyes in nanoparticles and sensitization of their fluorescence by nanoparticle-forming complexes make it possible to determine the concentration of these dyes in aqueous solutions by the luminescent method in the range of up to 1 nM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call