Abstract

A mass of oxygen vacancies are successfully introduced into TiO2 nanotube arrays using low-cost NaBH4 as a reductant in a liquid-phase environment. By controlling and adjusting the reduction time over the range of 0-24 h, the doping concentration of the oxygen vacancy is controllable and eventually reaches saturation. Meanwhile, the thermal stability of oxygen vacancies is also investigated, indicating that part of the oxygen vacancies remain stable up to 250 °C. In addition, this liquid-phase reduction strategy significantly lowers the requirements of instruments and cost. More interesting, reduced TiO2 nanotube arrays show drastically enhanced field emission performances including substantially decreased turn-on field from 25.01 to 2.65 V/μm, a high current density of 3.5 mA/cm(2) at 7.2 V/μm, and an excellent field emission stability and repeatability. These results are attributed to the oxygen vacancies obtained by reducing in NaBH4 solution, resulting in a reduced effective work function and an increased conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.