Abstract
In this study, Au nanoparticles coating Ni3S2-ZnS/carbon-coated TiN nanotube arrays (Au@Ni3S2-ZnS/C-TiN NTAs) were fabricated through the controlled electrodeposition of vertical ZnS nanosheets and an ultra-thin Ni3S2 nanosheet layer onto the C-TiN NTAs of 3-dimensional bracket structure of C-TiN NTAs. Subsequently, Au nanoparticles were sputtered onto this structure. This careful structure design endowed the Au@Ni3S2-ZnS/C-TiN NTAs composite materials with additional active sites and improved capacitance and cycling stability properties. The Au nanoparticle coating led to an increase in sulfur vacancies, enhancing the accessibility and adsorption of OH− ions, thus improving ions and electrons transport properties and consequently enhancing capacitive properties of the material. The cyclic stability of the Ni3S2-ZnS/C-TiN NTAs was substantially improved through performing Au-ion beam sputtering on its surface. Additionally, an aqueous asymmetric supercapacitor was assembled using an Au@Ni3S2-ZnS/C-TiN NTAs as the negative electrode and Au-coated ZnS/NF (nickel foam) as the positive electrode. The aqueous supercapacitor device exhibited a wide potential window voltage of 1.8 V, coupled with high energy density and cycling stability. As indicated by experimental results, the as-prepared Au@Ni3S2-ZnS/C-TiN NTAs present as a promising negative electrode material for asymmetric supercapacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.