Abstract

The graphene oxide-coated SnO2-Li1/3Co1/3Mn1/3O2 (GO-SnO2-NCM) cathode material was successfully synthesized via a facile wet chemical method. The pristine NCM and GO-SnO2-NCM were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results showed that the double-coating layer did not destroy the NCM crystal structure, with multiple nano-SnO2 particles and GO uniformly covering the NCM surface. Electrochemical tests indicated that GO-SnO2-NCM exhibited excellent cycling performance, with 90.7% capacity retention at 1 C after 100 cycles, which was higher than 74.3% for the pristine NCM at the same cycle. The rate capability showed that the double-coating layer enhanced surface electronic–ionic transport. Electrochemical impedance spectroscopy results confirmed that the GO-SnO2-coating layer effectively suppressed the increased electrode polarization and charge transfer resistance during cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.