Abstract

Mesoporous TiO2 nanoparticles have been synthesized via facile hydrolytic hydrothermal technique without incorporation any template. The precious metallic nanoparticles; Ag, Pt and Pd have been embedded between the anatase particles using in situ reduction step. The structural properties of the as-synthesized samples were investigated by X-ray diffraction, transmission electron microscopic and N2 adsorption–desorption isotherm (SBET). The electrochemical studies for the as-prepared anode materials including, cyclic voltammetry and electrochemical impedance spectroscopy indicated a significant improvement in the electronic conductivity of the lithium-TiO2 cells. Therefore, the charge–discharge rates were noticeably promoted as a result of the enhancement of Li–ion diffusion and charge transfer. The cycling results of Pd-TiO2 revealed a marvelous improvement in both charge and discharge capacities by 89.4 and 88 % after 10 cycles at C/5 rate. Generally, all the as-prepared TiO2 nanocomposites showed enhanced specific capacity, cycling stability and rate capability compared to the pure TiO2, providing a promising behavior for use as anodes in lithium ion batteries (LIBs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call