Abstract

The lead-free ferroelectric 0.4Ba0.85Ca0.15Zr0.10Ti0.90O3–0.6BaTi0.89Sn0.11O3 (0.4BCZT–0.6BTSn) ceramics were successfully prepared by the sol–gel process. Raman spectroscopy was used to examine the structural properties of the 0.4BCZT-0.6BTSn sample. The findings indicate that the sample was well crystallized into a single perovskite structure. The phase transitions of the studied sample have been investigated using the DSC technique. The electrocaloric effect (ECE) properties were indirectly determined using the Maxwell approach. Under a relatively low applied electric field of 30 kV cm−1, the results show enhanced electrocaloric temperature change and entropy change of ΔT = 1.32 K and ΔS = 1.41 J/kg.K, respectively. Besides, the electrocaloric responsivity (ξ max = 0.45 K·mm/kV) obtained is among the highest reported values in pb-free ferroelectrics near room temperature. These findings demonstrate that the lead-free 0.4BCZT–0.6BTSn ceramic is a promising candidate for solid-state cooling applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call