Abstract

The biocatalytic degradation of poly(ethylene terephthalate) (PET) through enzymatic methods has garnered considerable attention due to its environmentally friendly and non-polluting nature, as well as its high specificity. While previous efforts in enhancing IsPETase performance have focused on amino acid substitutions in protein engineering, we introduced an amino acid insertion strategy in this work. By inserting a negatively charged acidic amino acid, Glu, at the right-angle bend of IsPETase, the binding capability between the enzyme's active pocket and PET was improved. The resulted mutant IsPETase9394insE exhibited enhanced hydrolytic activity towards PET at various temperatures ranging from 30 to 45 ℃ compared with the wild-type IsPETase. Notably, a 10.04-fold increase was observed at 45 ℃. To further enhance PET hydrolysis, different carbohydrate-binding modules (CBMs) were incorporated at the C-terminus of IsPETase9394insE. Among these, the fusion of CBM from Verrucosispora sioxanthis exhibited the highest enhancement, resulting in a 1.82-fold increase in PET hydrolytic activity at 37 ℃ compared with the IsPETase9394insE. Finally, the engineered variant was successfully employed for the degradation of polyester filter cloth, demonstrating its promising hydrolytic capacity. In conclusion, this research presents an alternative enzyme engineering strategy for modifying PETases and enriches the pool of potential candidates for industrial PET degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.