Abstract

BackgroundThe CXCL12-CXCR4 signaling axis in malignant tumor biology has increased in importance, and these peptides are implicated in tumor growth, invasion and metastasis. The aim of our study was to examine the important role of the axis in pancreatic cancer (PaCa) cells’ relationship with stromal cells in gemcitabine-resistant (GEM-R) tumors and to confirm the effectiveness of CXCR4 antagonists for the treatment of GEM-R PaCa cells.MethodsWe established two GEM-R PaCa cell lines using MIA PaCa-2 and AsPC-1 cells. The expression of CXCR4 mRNA in PaCa cells and the expression of CXCL12 mRNA in fibroblasts were examined by reverse transcription polymerase chain reaction (RT-PCR). The expression of CXCR4 protein in PaCa cells was examined by immunosorbent assay (ELISA) and immunocytochemistry. Using Matrigel invasion assays and animal studies, we then examined the effects of two CXCR4 antagonists, AMD11070 and KRH3955, on the invasiveness and tumorigenicity of GEM-R PaCa cells stimulated by CXCL12.ResultsWe found that the expression of CXCR4 in GEM-R PaCa cells was significantly enhanced by GEM but not in normal GEM-sensitive (GEM-S) PaCa cells. In RT-PCR and ELISA assays, the production and secretion of CXCL12 from fibroblasts was significantly enhanced by co-culturing with GEM-R PaCa cells treated with GEM. In Matrigel invasion assays, the invasiveness of GEM-R PaCa cells treated with GEM was significantly activated by fibroblast-derived CXCL12 and was significantly inhibited by CXCR4 antagonists, AMD11070 and KRH3955. In vivo, the tumorigenicity of GEM-R PaCa cells was activated by GEM, and it was significantly inhibited by the addition with CXCR4 antagonists.ConclusionsOur findings demonstrate that the CXCL12-CXCR4 signaling axis plays an important role in PaCa cells’ resistance to GEM. CXCR4 expression was significantly enhanced by the exposure to GEM in GEM-R PaCa cells but not in GEM-S PaCa cells. Furthermore, CXCR4 antagonists can inhibit the growth and invasion of GEM-R PaCa cells. These agents may be useful as second-line chemotherapy for GEM-R PaCa in the future.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-016-2340-z) contains supplementary material, which is available to authorized users.

Highlights

  • The CXCL12-CXCR4 signaling axis in malignant tumor biology has increased in importance, and these peptides are implicated in tumor growth, invasion and metastasis

  • We used 2 GEM-R pancreatic cancer (PaCa) cell lines, MIA PaCa-2 and AsPC-1. With these 2 cell lines, we found that GEM significantly inhibited GEM-S cell proliferation in a dose-dependent manner (P < 0.01); it could not inhibit GEM-R cell proliferation at the doses used (Fig. 1a, MIA PaCa-2; Fig. 1b, AsPC-1)

  • The expression of CXCR4 in GEM-R PaCa cells was enhanced by GEM The expression of CXCR4 protein by PaCa cells was examined by means of Enzyme Linked Immuno Solvent Assay (ELISA) assays

Read more

Summary

Introduction

The CXCL12-CXCR4 signaling axis in malignant tumor biology has increased in importance, and these peptides are implicated in tumor growth, invasion and metastasis. The aim of our study was to examine the important role of the axis in pancreatic cancer (PaCa) cells’ relationship with stromal cells in gemcitabine-resistant (GEM-R) tumors and to confirm the effectiveness of CXCR4 antagonists for the treatment of GEM-R PaCa cells. Radiotherapy and chemotherapy, the 5-year survival rate of patients with PaCa remains less than 5 % [2]. GEM remains the standard treatment for pancreatic cancer patients. It has not proven very effective clinically, and improvement in a patient’s survival undergoing GEM therapy is minimal [4]. Clinical experience has shown that there is a transient effect of GEM therapy on PaCa after beginning chemotherapy; resistance to GEM readily appears

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call