Abstract

Iron-sheathed MgB2 wires doped with 0, 1.3 and 2.52 wt% carbon protected nickel superparamagnetic nanoparticles (the average diameter of the particles is 20 nm) and sintered at 650 °C were prepared. X-ray diffraction patterns and magnetization measurements showed that neither substitution of C for B nor substitution of Ni for Mg occurred during the synthesis process. Scanning electron microscopy imaging of the doped sample revealed a homogeneous distribution of nickel particles within the MgB2 matrix. Transport (magnetoresistivity R(T,B) and critical current density Jc(B) in the temperature range 1.5–40 K) and magnetic measurements (magnetic hysteresis loops at temperatures below and above the superconducting transition temperature) were performed on Fe-sheathed wires and the superconducting cores of these wires. A small enhancement of the irreversibility field Birr(t = Tirr(B)/Tirr(0)) of the doped wires was observed in the low field range. Significant enhancement of Jc(B), especially at low temperature (5 K), was observed: at 5 K and 10 T, for both doped wires, Jc is 2.5 times larger than that for the undoped wire.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.