Abstract

Objectives : The physicochemical characteristics of Mg-biochar composites derived from kelp and pine after pretreatment with MgCl2 were analyzed, and their adsorption capacities for an anionic dye, Congo red (CR), were evaluated.Methods : After pretreating 60 g of kelp and pine sawdust in 1 L of 0.1 M MgCl2・6H2O, the raw materials were pyrolyzed at 500℃ to produce Mg-biochar composites (kelp based KB-Mg and pine based PB-Mg). The fundamental physicochemical characteristics of the Mg-biochar composites were examined, and their adsorption capacities for CR were investigated using different initial pH values, adsorption kinetic models, and adsorption isotherm models.Results and discussion : The Mg-biochar composites showed the development of uniform deposits of Mg minerals primarily as MgO crystal on the surface by the surface modification with MgCl2. When the pristine biochars were surface-modified with MgCl2, their adsorption capacities for CR were significantly increased over the entire pH range tested. The CR adsorption process by all biochars was best described with the pseudo-first order kinetics model, and the adsorption isotherm characteristics were better described with the Langmuir isotherm model for all biochars. The Langmuir maximum adsorption capacities for KB-Mg and PB-Mg were 423.0 mg/g and 394.7 mg/g, respectively. It is suggested that the main mechanism for CR adsorption on the Mg-biochars is electrostatic attraction between CR and the biochars.Conclusions : The results showed that surface modification with MgCl2 could greatly enhance the CR adsorption capacity of biochars, and the results demonstrated the great potential of KB-Mg and PB-Mg for CR removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call